Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902447

RESUMO

Tumor Treating Fields (TTFields) were incorporated into the treatment of glioblastoma, the most malignant brain tumor, after showing an effect on progression-free and overall survival in a phase III clinical trial. The combination of TTFields and an antimitotic drug might further improve this approach. Here, we tested the combination of TTFields with AZD1152, an Aurora B kinase inhibitor, in primary cultures of newly diagnosed (ndGBM) and recurrent glioblastoma (rGBM). AZD1152 concentration was titrated for each cell line and 5-30 nM were used alone or in addition to TTFields (1.6 V/cm RMS; 200 kHz) applied for 72 h using the inovitro™ system. Cell morphological changes were visualized by conventional and confocal laser microscopy. The cytotoxic effects were determined by cell viability assays. Primary cultures of ndGBM and rGBM varied in p53 mutational status; ploidy; EGFR expression and MGMT-promoter methylation status. Nevertheless; in all primary cultures; a significant cytotoxic effect was found following TTFields treatment alone and in all but one, a significant effect after treatment with AZD1152 alone was also observed. Moreover, in all primary cultures the combined treatment had the most pronounced cytotoxic effect in parallel with morphological changes. The combined treatment of TTFields and AZD1152 led to a significant reduction in the number of ndGBM and rGBM cells compared to each treatment alone. Further evaluation of this approach, which has to be considered as a proof of concept, is warranted, before entering into early clinical trials.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Aurora Quinase B/metabolismo , Recidiva Local de Neoplasia , Antineoplásicos/farmacologia
2.
Cell Death Dis ; 9(11): 1074, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341282

RESUMO

Tumor Treating Fields (TTFields), an approved treatment modality for glioblastoma, are delivered via non-invasive application of low-intensity, intermediate-frequency, alternating electric fields. TTFields application leads to abnormal mitosis, aneuploidy, and increased cell granularity, which are often associated with enhancement of autophagy. In this work, we evaluated whether TTFields effected the regulation of autophagy in glioma cells. We found that autophagy is upregulated in glioma cells treated with TTFields as demonstrated by immunoblot analysis of the lipidated microtubule-associated protein light chain 3 (LC3-II). Fluorescence and transmission electron microscopy demonstrated the presence of LC3 puncta and typical autophagosome-like structures in TTFields-treated cells. Utilizing time-lapse microscopy, we found that the significant increase in the formation of LC3 puncta was specific to cells that divided during TTFields application. Evaluation of selected cell stress parameters revealed an increase in the expression of the endoplasmic reticulum (ER) stress marker GRP78 and decreased intracellular ATP levels, both of which are indicative of increased proteotoxic stress. Pathway analysis demonstrated that TTFields-induced upregulation of autophagy is dependent on AMP-activated protein kinase (AMPK) activation. Depletion of AMPK or autophagy-related protein 7 (ATG7) inhibited the upregulation of autophagy in response to TTFields, as well as sensitized cells to the treatment, suggesting that cancer cells utilize autophagy as a resistance mechanism to TTFields. Combining TTFields with the autophagy inhibitor chloroquine (CQ) resulted in a significant dose-dependent reduction in cell growth compared with either TTFields or CQ alone. These results suggest that dividing cells upregulate autophagy in response to aneuploidy and ER stress induced by TTFields, and that AMPK serves as a key regulator of this process.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Neoplasias Encefálicas/patologia , Estimulação Elétrica/métodos , Glioblastoma/patologia , Regulação para Cima , Trifosfato de Adenosina/metabolismo , Aneuploidia , Animais , Autofagossomos/metabolismo , Proteína 7 Relacionada à Autofagia/antagonistas & inibidores , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia por Estimulação Elétrica , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Glioblastoma/terapia , Proteínas de Choque Térmico/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Ratos , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...